Center Independent Research & Development: JPL IRAD

mm-Wave Near Field Periodic Couplers For Future Module Interconnects (NFPC)

NASA

Completed Technology Project (2014 - 2017)

Project Introduction

A high speed dielectric waveguide datalink providing fault tolerance, eliminating reliance on electrical contact and increasing data-rates to the Gb/s range.

Millimeter-wave (mm-wave) communications have gained attention in recent years, primarily since the high fractional bandwidth potentially offers multi-Gb/s wireless data-links [1-3]. Recently demonstrated mm-wave transceivers offer impressively high data-rates, however, their range is typically limited to only a few meters, and so non-free space mm-wave communication approaches have been developed to operate over longer distances of up to 10 meters. Dielectric ribbons are one example of this, and allow direct coupling from a transceiver with either an on-chip probe or antenna structure placed nearby the ribbon's end. The simplicity of coupling makes them attractive for aircraft and spacecraft applications as transmission through a dielectric ribbon does not rely on an electrical contact, only a coupled wave. Additionally dielectric ribbons can be much lighter weight than copper interconnects, reducing overall payload weight. Also demonstrated data rates of 3 Gb/s can easily be multiplexed down to several Mb per second allowing replacement of several hundred low speed control cables.

Anticipated Benefits

Can improve electrical reliability, replace heavy cabling and combine many 100s of low speed cables into a single interconnect. Also improved data rate over existing interconnect technology

Data transfer speed, reliability and efficiency can be improved a any electronic hardware the requires weight and power savings.

mm-Wave Near Field Periodic Couplers For Future Module Interconnects

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Organizational Responsibility	1
Primary U.S. Work Locations	
and Key Partners	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Center Independent Research & Development: JPL IRAD

mm-Wave Near Field Periodic Couplers For Future Module Interconnects (NFPC)

Completed Technology Project (2014 - 2017)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Project Management

Program Manager:

Fred Y Hadaegh

Project Manager:

Jonas Zmuidzinas

Principal Investigator:

Adrian J Tang

Technology Maturity (TRL)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - ☐ TX02.1 Avionics

 Component Technologies
 - ☐ TX02.1.3 High Performance Processors

